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Unified"
Flight Mechanics and Aeroelasticity

for
Accelerating, Maneuvering, Flexible Aircraft

Dr. James J. Olsen
Olsen Engineering Consulting

1186 Tralee Trail
Dayton, Ohio 45430-1219

United States

In many aircraft applications, the mutual coupling of
Abstract rigid body and flexible motions has been small because

the vehicle angular velocities and flexible frequencies
This paper reveals new insights in the aeroclasticity and were well separated. However, there have been recent
flight mechanics of flexible aircraft by obtaining and examples of large aircraft where flexible frequencies (say
solving the equations of motion for a flexible, 2 liz) begin to approach the rigid body angular
accelerating, rotating aircraft. We illustrate the approach velocities (say 1 Hz). Other cases have been known
for three cases of increasing complexity: The first case where the aerodynamic forces can drive the structural
is a "sprung" pendulum. It shows when rigid body frequencies and the rigid body frequencies close together.
angular velocities can be important in the flexibility In both cases the coupling effects should be accounted
equations as they approach as the flexible frequencies. for in the lowest order equations of motion to obtain the
The second case is a typical section airfoil on an correct modeling.
accelerating, rotating fuselage. It applies Lagrange's To develop the necessary equations we must account for
equations to a longitudinal problem in inertial
coordinates, then transforms the equations to the fact that the aircraft's body - fixed coordinate system
noninertial, body - fixed coordinates for solution. It also is not (in general) an inertial system. Dusto et al [11,
shows when rigid body rotations and longitudinal Bekir et al [21 and Waszak and Schmidt [31 are a few
accelerations must be included in the flexibility examples of earlier attempts which have had to leave
equations. The third case is the general out crucial terms or were difficult to implement. This
longitudinal/lateral motion of an accelerating, rotating, paper shows that a practical set of equations for general
flexible vehicle. Rather than setting up the general problems is available through the use of energy
problem in inertial coordinates and then transforming to methods, Lagrange's equations and "quasi - coordinates".
body - fixed coordinates, instcad we use the idca of
"quasi - coordinates". We establish a general form for We illustrate the approach for three cases of increasing
Lagrange's equations in the noninertial, body - fixed complexity: The first case is a "sprung" pendulum. It
coordinates. The paper gives the general equations and shows when rigid body angular velocities can be
reduces them to a special case of a "flat" airplane. It also important in the flexibility equations as they approach
gives guidelines as to when the rigid body rotations and as the flexible frequencies. The second case is a typical
accelerations are important factors in the flexibility section airfoil on an accelerating, rotating fuselage. It
equations. applies Lagrange's equations to a longitudinal problem

in inertial coordinates, then transforms the equations to
1. Introduction noninertial, body - fixed coordinates for solution. It also

shows when rigid body rotations and longitudinal
For many years there has been a search for a practical accelerations must be included in the flexibility
set of "unified" equations of motion that can be used in equations. The third case is the general
all of the disciplines of aerodynamics, structures and longitudinal/lateral motion of an accelerating, rotating,
stability and control of flexible aircraft. Such an flexible vehicle. Rather than setting up the general
approach would allow the customary determination of problem in inertial coordinates and then transforming to
the effects of structural flexibility on aircraft body - fixed coordinates, instead we use the idea of
performance, stability and air loads. An added benefit is "quasi - coordinates". We establish a general form for
that it would also allow us to determine the effects of Lagrange's equations in the noninertial, body - fixed
the "rigid body" motions on acrodlastic characteristics coordinates. The paper gives the general equations and
such as control - effectiveness, divergence and flutter. reduces them to a special case of a "flat" airplane. It also
Further (and most importantly), it would allow all of gives guidelines as to when the rigid body rotations and
those engineering problems to be treated by subsets of a accelerations are important factors in the flexibility
single set of "unified" equations. In effect we want to equations.
convert the aeroelastic problems into coordinate systems
and equations that arc conventional for aircraft flight The equations become somewhat more complicated, and
mechanics, stability and control. it is useful to exanmine them in three stages. First, some

Paper presented at the RTO AVT Specialists' Meeting on "Structural Aspects of Flexible Aircraft Control",
held in Ottawa, Canada, 18-20 October 1999, and published in RTO MP-36.
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insight is available via a simplification which considers
the rigid body motions merely as constant parameters. Olsen[ 61 showed a related (and sometimes) simpler
There the rigid body motions alter the flexible approach, noting that if we could write the partial
frequencies of vibration, thereby altering acroclastic derivatives:
stability. Second, a more exact approach is to recognize =X -Yi- a Zi = aZ
that the flexibility equations have some of the aiq aq- - (qi
characteristics of Mathieu's classical ordinary differential a2 X 2 Y 2z
equation. The similarity to Mathieu's equation Xi- - Y.. q I Z- - a

introduces the possibility that the coupled rigid - &jlj I aqiqj IJ qiaqJ
body/flexible motions can be unstable within narrow
ranges of frequencies and amplitudes, even without We don't need the often tedious expressions for the
aerodynamic forces. Third, the ultimate procedure is kinetic energy, and the equations of motion take the

always available - the simultaneous solution (perhaps form:
numerically) of the fully coupled, non - linear, rigid n n n d au aU
body and flexibility equations of motion in body - fixed mi fj + I I mijk% 4k = Qi + "T ( i) - 9qi
coordinates. 1 j= Ik=1

where:
2. La2ranse's EQuations mij = JfXiX- + YYij + 4Zj)dm

If the inertial coordinates of a dynamic system can be mass
represented in terms of N independent generalized (
coordinates: mijk = fXiXjk + yik+ ZiZjk)dm

X=X(qi) Y=Y(qi) Z=Z(qi) mass

Lagrange's equations 141 can describe the motion of the Even though Whittaker's and Olsen's expressions look

system: simple in principle, in practice their implementation
can be quite lengthy for complicated geometries with

d •-L - dL many degrees of freedom. The development of the
Tt Tq4i dqj ~required expressions can be greatly assisted by symbolic

where: algebra software.
L = Lagrangian, T - U

3. Example of Coupled Rigid - Flexible
Qi = Generalized Force Motions. The "Sprung" Pendulum

T = Kinetic Energy In the first case we want to determine when "rigid body"

U = Potential Energy motions can have important effects on the flexible
motions. Consider the "sprung" pendulum which is free

For simple geometries, it usually is a straightforward to rotate or oscillate about the origin in the x, y (or
matter to write down the inertial coordinates, inertial r, 0 ) plane, but which also contains a radial spring of
velocities, kinetic and potential energies, the linear stiffness k (Figure 1). We will refer to the angular
Lagrangian, and the various derivatives. For complicated motion as the "rigid body" motion and the radial motion
geometries, the process can become tedious, but as the "flexible" motion. Proceeding through the usual
Whittaker[ 5 ] showed that, if the kinetic energy can be process[ 41 of the inertial coordinates, inertial velocities,
expressed in terms of the coefficients mij virtual displacements, kinetic energy, potential energies

n n (due to stiffness and gravity), the Lagrangian is:

T I=½ rEmili1  L = m(I2 + r2+ 2) 2_ k(r-rk)2 -mg(rsinO-Yg)

i= 1 jl From Lagrange's equations the radial differential

Then the equations of motion can be written equations is:

[ n n 2 + - gsin0IEmi,4j +E ýjE =k d{(OUý 9U +'0- r=-+-r

We also can obtain the angular equation, but we can

where the Christoffel symbol is: always interpret it as the angular force required to

[jk] I produce the stipulated motions.

[i dqk + dqj  )qi 3.1 Rotation at Constant Aneular
Velocity
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upper bounds of the narrow unstable region for
In the first case we stipulate that the pendulum moves frequency ratios near 1 and for angular amplitudes up to
through a complete circular motion at a constant 10 degrees. The instability range continues to widen for

angular velocity of co. ThenO = aot, and the radial higher values of the angular amplitude. For frequency

differential equation is: ratios near 2, 3, 4,..., the instability ranges exist, but

2 2() F, over ever narrower ranges of angular amplitude.•+ 20 w r=-•+-rk -gsin~t1  locnteFgr
1 r+ 0 MWe also can integrate the equation numerically. Figure

Regardless of the radial force, the radial response acts as 4 shows typical time histories for a frequency ratio of

if the natural frequency in the radial direction was 1.1, damping of 0.02 and amplitudes of 0.53, 0.54 and

__ 2 2 0.55 radians. The solutions are stable for 0.53 radians
Weffective -'- 0 - 0) and unstable for 0.54 and 0.55 radians. Figure 5 gives a

general pattern for the smallest amplitudes to produce
3.2 Simple Harmonic Rotation instability for damping of 0.02 and frequency ratios up

In the second case we stipulate that the pendulum to 2.

oscillates through an amplitude 00 with a constant In summary, the problem of the "sprung" pendulum

frequency ao. Then 0 = 00 sin cand the radial shows that rigid body motions can affect the flexible

differential equation is: motions:
+ [2 +0 1 ] 2 a. Constant angular velocity reduces the+ ) (- cos2cot) rP =+"02 "effective" radial natural frequency;

b. Forced sinusoidal angular motion can

The complete solution of the radial equation depends on produce radial instability near integer values of the

the LHS, RHS and initial conditions. The LHS can be frequency ratio as the angular amplitudes grow large.

converted, with a change of variables,2 4. Typical section Airfoil on an

"T=O)t a= C--OO 02 b 100 Accelerating, Rotating Fuselage

tThe second case is a problem that is closer to practical
to the classical Mathieu's equation. interest - a typical section airfoil on an accelerating,

Ir7+ (a - 2bcos2-)r 0 rotating fuselage. We will apply Lagrange's equations in
inertial coordinates, then transform the equations to

Mathieu's equation applies to the vibrations of spinning noninertial, body - fixed coordinates for solution. We

satellites, buckling of beams with periodic end forces, want to show when rigid body rotations and

the saturation of loudspeakers, tides in circular bodies of longitudinal accelerations must be included in the

water and many other problems. In our application, if flexibility equations.
the radial force does not depend on r then the stability of

Consider a slender airfoil which is mounted on a slender
the solutions depends only on the frequency ratio - fuselage. (Figure 6). The fuselage has inertial

and the angular amplitude 00 coordinates X0 = ql, Y0 = q 2 and pitch angle
0 = q3 . The airfoil is located at fuselage position

Intuitively, one would expect that the effects on x = xw and has its own degrees of freedom in vertical
stability would be small unless the angular amplitude is translation h = q4 and rotation 6 = q5 .
large or the frequency ratio is near 1. Figure 2 (from

MeLachlan [7 1) shows the classical plot of the regions 4.1 Eguations of Motion
of stability/instability for periodic solutions of
Mathieu's equation. Regions of instability are shown to
be emanating from the points For a general point on the slender fuselage and airfoil

a-= ( )2 _ 102 =1,22 3 2 .n 2  the inertial coordinates are:

FuselageX = ql + xc 3  Y = q2 + xs3

So a question becomes - what practical values of a, b
put the solutions into the stable or unstable regions. X = q, + XwC3 - q4 s3 + ýc35
For instance, in the neighborhood of a= 1, we can use Airfoil

McLachlan's[7l boundaries to obtain a region for Y = + xwS 3 + q4c3 +
instability for small b. Figure 3 shows the lower and
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Proceeding through the usual process of the inertial The total solution requires the solution of the five
coordinates, inertial velocities, virtual displacements, coupled equations. It can be convenient to separate the
kinetic and potential energies (due to stiffness and complete equations into separate rigid equations and
gravity) and the Lagrangian for the complete flexible equations. If we separate the purely rigid body
fuselage/airfoil system, we establish the complete terms, coupling terms and purely flexible terms - the
nonlinear equations in inertial coordinates. Then, it is linearized flexibility equations, in body - fixed
more convenient to actually solve the problem in a coordinates, (with damping added) are:
body - fixed coordinate system. So we define the r Sw1[44+ rc4 011441
"apparent" body - fixed components of the vehicle's [S. 1.1451 [ 0 c5Jjtj5

velocities and accelerations by 401 *.2rm- S- 1 [0 0 q4]

qx =qIC3 + q2 s 3  qy =q 2 c 3 -qls 3  [ k 5]- s -q S _wj- SwqA+gs3)[O l])jq

{•} 

]{i~Jy I {wl+[40]qr

"4x =q4C 3 + 42s3  iy =tq22 c3 -l q, s3mw I r wxw+Swm ,X} + 3 {m}+fk4 0- 4,,
-[S . w + X ý-S w ] q S .1 [ 0 k.5] q s, ýf

We simplify further by dropping second order terms in
q4 , q5 to obtain the linearized equations in terms of 4.3 Vibration Solutions
noninertial, body - fixed coordinates. Immediately we can see hints of the effects of the pitch

M, 0 -MA, 0 -M10"1 [4 [IY3 2M4 1 22 45 1 rate T3 and the acceleration along the body axis qx as
I 0 Ml k8 M44 k51 1y I iM- o 0 014 they alter the "effective stiffness" in the flexibility
IAM• My 3  U34  4 .3 43 1 0 0 0 1 q.4

0 M44  34 t 0 0 /14/ equation. Assuming q3, qx are constants, figures7 and
L-Mi43s Mf M ,5 Mý M55 l I9  [M3 5  0 0o 8 show the effects of aircraft pitch rate on the coupled

o 0 0 1 o 1 U J2 IQ3 +-I . " 0 / (unbalance not equal zero) airfoil frequencies of
+1o l4l, Mi 11 1M3 1 + /_-[ .[ Q1 t+ 0 translation and rotation for the airfoil slightly aft and

k4 01 1  IMI II QI 4 I slight forward (I chord) of the aircraft axis.
0 k] ] tki [435J - J [ 0 1 [-q J

In the case of the unbalance equal zero, the vibration
where equations are uncoupled and the translation mode just

mwn= fdm acts as if the "effective" stiffness is
wing •w 2 = k4 ( 43 )2 1

k4d, =k 4 - m q3 44Sw =f dmII
Sw = fIn the case where the 43 = 0 but the unbalance is not

zero, the equations remain coupled, but the torsion

Iw = f• 2dm equation acts with an "effective" stiffness

wing k5 - Swqx = ks 1 2 g q2^2 5

M33 = If + Iw + mwx2 + 2Swxw rw 0:05 g)

Whether the effective torsional stiffness is slightly
M34 = mwXw + Sw larger or smaller depends on the sign of the unbalance

35 _- w + Sww and whether the aircraft is accelerating or decelerating.

4.4 Aeroelastic (Hvoersonic)
M/45 = Sw Equations

M-3 3 4 = mwq4 + Swq5 We use (for convenience) hypersonic aerodynamics from

AM3 3 5 = Sw(q 4 - xwqs) piston theory[ 81, to obtain the hypersonic flexibility
eutons.

M443 5 = Swq5 i. . 0 1 11 I1 -I
-_[([;L•2 o01 +, 11 ,21 I ", 1ý 1 0 O0144

0 1 0 j 0 i 211ý 1 f

My3= Sf +Xwmw + Sw aw ýz1-oI 1- -"1- 1 1 N

4.2 Separate Rihid and Flexible + 1 -t1 ,+,2 o11~,'1
Equations - Body Coordinates

where the nondimensional variables are defined by:
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Therefore those rigid body motions also can alter the
lengths aircraft speeds for acroelastic divergence and flutter. For
c=chord l=span example, under the assumed conditions we can obtain an

positions/coordinates xw = cxw 'le CýIe approximate expression for the It required for
q4 = CA4 qx = Cqx qy = C4, aeroelastic divergence:

qDiv -T--[- 0 Tk - TS T)

inertias -4 kuT vr
2-^ 2  w hereSW = mwCdw Iw = mwC rwV l-/

stiffnesses A q/4 •

2 2 2k2 2
k4= mwO4  k5 =Iwa)5 = MC rw5 which shows the importance on the divergence speed of:

a. c , the ratio of the pitch rate to the
danppngs uncoupled translation frequency;

c4= 2m~wa4g4 c5 = 2mwC rwtOJ55
b. -- ', the relationship of the acceleration to

time and frequency A5 rW

t = T =•"co the torsional frequency and the radius of gyration
SV.o c. 4, the ratio of the uncoupled translation and

time derivative rotation frequencies

f2() Vd. !-, the relationship of the unbalance to the
ft)f';)- f(/)f() radius of gyration.

air density and gravity We also can use the hypersonic aeroelastic equation to
do an eigenvalue calculation (dropping the RHS) to

C2 obtain flutter solutions. Figures 9 and 10 showpI= c A gc representative effects of pitch rate and acceleration on

W g hypersonic divergence and flutter boundaries.

aerodynamic coefficients 4.6 Forced Rigid Body Motions in the
Aeroelastic Equations

V2 1c 2 21c
Q4=N = CNw Q5N= Mw V CMw Rather than assume that the rigid body motions are

constant parameters, we can assume representative

Geometry integrals forms for their time dependent motions and then plug
them into the flexible equations of motion. We need the

A 2 .2

, = ý/e- 0.5 F2 = ýt2 - ýe + 0.333... terms a, , q3 ,qx, y and q3 . Following

Etkin's[ 9] notation we can assume the time dependent
As usual, the damping is modified with the aerodynamic forms for the oscillatory, damped speed, pitch angle and
damping and the stiffness is modified with the angle of attack, wherein each expression the terms a and
aerodynamic stiffness. However, the stiffness also has b are assumed constants:
terms that are proportional to the nondimensional pitch 4x = uO + E(auS1 + NCO

rate q6 and the nondimensional acceleration qx.
0 =q 3 =00 + E(aoS1 + boC1 )

4.5 Rinid Body Motions as Constant
Parameters in the Aeroelastic Equations a = a•0 + E(aai + baCI)

where
Now again consider the pitch rate and the aircraft - (0ýrbgbt

acceleration as constant parameters. From the S --sin n 0rbt C, = cosn arbt E =e-

differential equation and the vibration solutions, we (orb = assumed "rigid body" frequency
know that the rigid body pitch rate will decrease the grb = assumed "rigid body" damping
bending frequency (even if only slightly), and that the
rigid body acceleration (or deceleration) along the body Noting that qy Cha and combining angles where
axis can increase or decrease the torsional frequency. possible, we obtain the "forcing terms" to be included
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.2
in the equations of motion. The terms q3 , qx appear The kinetic energy, in terms of the inertial coordinates
on the LIIS of the equation and influence stability: is a lengthy expression which shows why it can be

4X (orbE(a**, S1 + b -.xC1  useful to use Olsen'sI 61 form of the equations of
r q. q ) motion (which doesn't require the kinetic energy), rather

q32 = (trb E (K. 2 + a2 S2 + b .2 C2  than Whittaker's[5] form which does require the kinetic
(3\q3 q3 q3 /energy.

The major point is that terms S2 = sin 2fl~rbt and 5.3. Overcoming the Tedious Aspects

C2 =cos2wolbt on the LIIS introduce behavior like that - Ouasi Coordinates

of Mathieu's equation. Again, we could use Lagrange's equations on the

5. The General Case - Three Dimensional Lagrangian in inertial coordinates to obtain the

Motion of a Flexible Vehicle equations of motion for the flexible system. We would
be accurately accounting for all of the inertia couplings

5.1 Geometry that arise from the fact that the noninertial x, y, z
system is accelerating and rotating in the inertial X, Y,
Z system. We could solve the problem in terms of the

We start with an inertial X, Y, Z coordinate system and inriltrsi We col sol an the Euler angthe
a noinetialx, , z ystm tat cn aceleatemidinertial translations ql, q2, q3 and the E uler angles

a noninertial x, y, Z system that can aceelerate and

rotate in the X, Y, Z system (Figure 11). The origin of q4, q5, q6 and then transform the results to the

the x, y, z is located in the inertial system at: translations along the body axes qx, qy, qz and the

X = X0 = ql Y = Y0 = q2 Z = Z4 = q3 instantaneous angular velocities ox, (oP, tz, using

the transformations:
The orientation of the x, y, z system is given by the { transf}ormations

conventional sequence of Eulcr rotations: qx, qy, qz = ['r I , q2' Q3 I
ip=q4 ( =q15 6=q6 1--=-{)xwY,'Z =[ k]{14'4 5 ,4 6 }

5.2 Inertial Coordinates
where

Then inertial coordinates of a general point in x, y, z [ -s 5  0 1]
are: tX,Y,Z}== ql,q2,q'3} +[r-x,Y,z}l [M=] 1c5s 6  C6  01

where [T], the Euler transformation 19 ], is the product [c 5 c6  -S6 0]

of three transformations that depend on the Euler angles: The approach is corrct in principal. lowever, it works

FrC] = [T 4 1- IT6] easiest for special cases like rotation about one axis
(where the time derivative of the appropriate Euler angle

rC4 -S4 01 rC5 0 S5] [l 0 01 is indeed the angular velocity). Hlowever, it suffers from
[-r4]= I•4 c4 01 [-rs]= 1 0 1 01 [T,]=10 c6 -S61 two shortcomings in the general case of three

[0 0 iJ [-S5 0 cn5 J [0 '6 c6  dimensional motions.

si= sin qi c = cosqi FirsA, the generalized coordinates ql, q2, q3

are the translations in the directions of the inertial
We also write the "local" coordinates in terms of coordinates. We would like to replace them with the

additional generalized coordinates (17,q8.... q, translations in directions of the noninertial, body - axis

coordinates qx, qy, qz"
{x, y,z = E {xi' Yi'Zi }qij( t)

fi= Second, the generalized coordinates q4, q5, q5

are the Euler angles. Their time derivatives q4, q5, q5
to obtain the inertial coordinates in terms of the may not be the physical angular velocities of the x, y, z
generalized coordinates: system for general motions. We would like to replace

y them with the physical angular velocities of the
{X, Y, Z} = {ql,q2,q,3j +[c {xi, Yi,Zi ýit) noninertial, body - axis coordinates, w2x, wy, aWz.

i =7
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Hlowcver, a much more elegant and simple method is alL 1 F OL 1] ai,]
available, the method of quasi - coordinates due to ,I I I Iq- I l

coordinates" refers to the fact that we cannot (in the d I iy y [ OyI
general case of three dimensional motions) directly d 0L , [Q31
integrate the angular velocities to get the generalized 7 q,-z J L0qj j -4z J
coordinates. Actually all we are doing is performing the
transformations before we apply Lagrange's equations to Rotation IDOFs:
obtain the differential equations, rather than after we get r [a[o 1 ]
them. rI0xI -d I 1d-- 5

Whittaker 5] and Meirovitch[ 12] explain the method It d -=[f ] "- } + [ ]5
of quasi- coordinates for the special case of rotational 9 [ 9t I I 9_ [0Q6J
motions. Several others, among them Nayfeh and 4 j L 3•-%[ J [ o'J
Mook 1 3], give applications.

'he basic idea is that we want to write Lagrange's Flexible DOFs remain the same (except that we must

equations in a form that treats directly the body axis use the modified Lagrangian L)
translations qx, qy, qz and the true angular velocities [ T L d -9L for i 7!

COx,W7y,WOz. Westartwiththeusualformof •i dqi Q

Lagrange's equations in terms of the original, where:
independent generalized coordinates ql, q2 . .. qn and 0 0 - z y

their time derivatives q1, q2 " -'n: [

d /_L 3 L\/3 Q. [Q]=I 0 - jTtd(O T"/}- 7•) = [-toy O)x 0

The Lagrangian can be written in the usual form in the These are the equations of motion in terms
original inertial coordinates: of auasi - coordinates. They are the

L L(ql,q2,q3, q4,q,q6,q7,'".qn ; fundamental advance which allows us to
L = q41 ,4 2 ,q 3 , 44 ,q 5 ,q 6 ,q 7 -..• formulate a unified set of equations that can

be used without simplification for the
aerodynamics, structures and stability and

If we note that: control of flexible aircraft - they allow us to

{14,q5,46} =[ 3]f x, COy, toz} place the aeroelastic problem into a

where coordinate system and notation that is used
51 -6 5in flieht mechanics and stability and control.Fo C5 S6  C5

1C61

]0[ ' 5.4 Enereies - Noninertial Body -
[0 1 = C6  -S6 Axis Coordinates1 t5s6  t5c6 I

t8 5The kinetic energy in terms of the body - axis variables
we can obtain the equivalent form of the Lagrangian in is:KE=M( +q +t22)

the quasi - coordinates:

L = L(qx,qy,qz q4 , q5 ,q 6 ,q 7 ,'"qn-; +Sx(yz- 4zOy)+ Sy(zox- xOz)+ Sz(qx y-4ywx)

4y glx4,ylz, O)x, (y,() z,47- ... n) +4 I wo 2y +O)2z )- _I, O y _IxzWxOOz

+ M1,+, O 2) _Iyz09y60 + 1 0)o~ +04)Then, following Whittaker[ 51 we can obtain the +$I, +( ) X + F (c+ X

equations for: +Siqx + Sýqy + St4z

Translation DOs: +(14 - ')>2 +(iy - +(ij -
S+.I
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where typical inertia integrals are: qx = U velocity along the x axis
M = fdm 4x = V velocity along the y axis

bodyx-m l jmq 4X = W velocity along the z axis

Sx = P angular velocity about the x axis
Sx =ftdm = wfxidmyi = y Sx •1 CY = Q angular velocity about the y axis

i z = R angular velocity about the z axis
Ixy = fxydm = Yfxiyjdni~iqj = .xy. qiqj Z(X,y,I)= X Zi(X'y)qi(t)

body tJ lJ

ity= f-iydm = .fxiYjdmeiqj =J xy.,iqj x The equations of motion become

body t, Translation
[1ý1 10 0 -s,1[ý] fwQ-V I R') PQ sThe potential energy due to gravity will come from our MW [0+1 0 -sf1 q 1+V -wp PQ -(P' + R)

gravitational model. In the case of a "flat earth": [V -S 0 R VP -UQ] 1 QR

= -gf(Z- Zrf)dm ,, 1 I 0 [(RI l-, . Ii
+g c5%g4

+glXis 1. 0 141 +q• - P Q R)jj i z = F,

=-gq3-Zref)m- g[O 0 1][,]l S, iqi
i=7 [Sz,] Rotation

C, 10 o 111 -alV - 1:J= c

We expect the potential energy due to flexibility to be [-sd 6. 0 L[w] 0 oC J.41,]
of the form F 0 PR QRjfL.] rvQjvR U Is [

n n4 I-CR - Q IR , C v J -ý P4,WRI s. cj oi5 • 0
Vf = I Vb qiqj PQ 02_ ý -io[Jj I -_P WQ -w ],,J [-5% -.' ]I,

Vf = YC 11 F- [ 0 C I [-(ViUR) -(R+PQ) (R2 - )1)

i=7J=74) 0-1 c,+I o 0 0 49 (tj-VR) (p2-,) -(R-P- S q /S
10 C 0] 1C -2P -2Q] ( 4VQ) -(P-QR) -(Q4 PR)1JI.,

Or perhaps a more general expression for larger ros, 0 . 1 fMJ

deflections 481s5 -C 01 Sx o i4P jiM0• oJ']s,.j 41 0 j [
1 n n n n n C. a01[S I 4[ 0

Vf = , 2 E VbJqiq flJ Flexible

i=7j=7 i-7j=7k-7 (W + VP -UQ)Sz -O- PR)Sxzi +( + QR)Syi

The author has performed those operations, and the +

complete set of differential equations is available (but + )[lj - ( qJZ z qi z=

too lengthy to present here). i

5.6 Simplification to the "Flat" The equations above are the equations to solve for the
Airplane static and dynamic response and stability of a flexible,

"flat" aircraft under steady state flight or in accelerations
If we specialize the general body to consider an and maneuvers. 'They are nonlinear and mutually couple
essentially "flat" surface in the xy plane (Right handed the overall rigid body motions with the flexible
xyz coordinate system attached to the body), Figure 12, deflections. They can be used for analyses of aircraft
and make the usual definitions performance, stability and control, flight loads, control

effectiveness and aeroelastic divergence and flutter. Of
course they are more complicated than the conventional
nonlinear equations for rigid body motions or the linear
equations for aeroelastic response (which are coupled to
the rigid body equations only through the
aerodynamics).

5.7 Perfect Masses and Modes

In the special case of
a. Mass symmetry about the y axis
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b. Origin at the center of mass coupling mechanism between the rigid body and flexible
c. Perfectly orthogonal free - free modes motions, even in the absence of aerodynamics. It

appears that if a flexible frequency is up to 1.3 - 1.5
the equations of motion simplify further to the usual times a rigid body frequency, then those coupling effects
rigid body equations and the modified flexible equations: should be considered. In some cases ("slender" aircraft)

the natural frequencies may already be in those ranges.
Translation In other cases (the X - 29) the aerodynamic forces drive

SWQ - VR s5 oFx some of the flexible frequencies down toward the rigid

fu fWUR -IWll l
UR-WP +g.-5s6 M 1 ,F 3. The airfoil on an accelerating/rotating fuselage shows

[W] [VP - UQJ k-c5c6 [Fz that the effective bending stiffness is reduced by a
constant pitch rate. It also shows that torsional stiffness

Rotation is increased or decreased by constant
acceleration/deceleration, depending on the sign of the[ 1 I ] unbalance. The results modify the divergence and flutter

QR speeds. If we impose the rigid body motions as forced,
-PR =xxsinusoidal, damped motions-then terms appear in the

Q ý + - y sdifferential equations which can produce additional

[RJ [ + PQJ iM /i instabilities, such as in Mathieu's equation.
/ J +IX +lyy J 4. In the case of general motion of a flexible body, the

combination of energy methods and quasi - coordinates
Fle xible can produce a practical set of equations that govern the

? _ (p a2 )} +=aerodynamics, flight mechanics and structures problems

14i + [a) -of flexible aircraft. They allow the determination of the

where effects of structutal flexibility on aircraft performance,

ti = natural frequency of the perfect ith mode stability and air loads and the effects of the "rigid body"
motions on aeroelastic control - effectiveness,

If we assume, for the moment, that the angular divergence and flutter.

velocities P and Q are constant, then one 5. For the special case of the "flat airplane" with perfect
approximation would be to treat the flexible equations mass distribution and perfect modes, a simple
as if the effective structural frequency for any mode is preliminary estimate of the effects of rigid body
just replaced by motions on flexible motions would be to replace all of

2 w2 _ (p2 +Q 22) the structural frequencies by:
/--W? --- t - +Q)

On the other hand, since P and Q will be functions of
time, the actual behavior will be more like the behavior 7. References
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2 Effects of Pitch Rate on Natural Frequencies,
_ _ _ __,_ _ fAirfoil Aftk: AF A p A, 11 n tM-30
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Figure 4. Time Histories for Frequency ratio 1.1

Figure 7. The Effects of pitch Rate on Natural Frequencies,
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Figure 5. Smallest value of Amplitude to Become Unstable
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Figure 6. Airfoil on an Accelerating, Rotating Fuselage
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Figure 10. The Effects of Acceleration on Hypersonic
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